行业资讯

faulhaber电机选型 1516T/1516T/1516T 空心杯 电机

2023-02-19 00:00:00
faulhaber电机选型 1516T/1516T/1516T 空心杯 电机
1.当电磁引起换相时,换相元件中会产生电抗电位和换相电位,这些电位之和一般大于零,称为延时换相。换向时,当背刷侧将一个换向片与另一个相邻的换向片分开时,换向电流不为零,换向元件中存储有电磁能。当前换向片分离电刷时,换向回路突然受阻,换向元件中的电磁能量只要突破空气就释放出来,产生火花。2、机械原因DC电机的生产,由于机械原因造成换向不良是一个重要方面。有很多机械方面的原因,比如三维换向器外表面的平整度和粗糙度,拆卸时换向器外表面与电机轴线的垂直度;换向片间绝缘凹陷或换向片凹陷;电刷接触面打磨不好,电刷与换向器表面仅部分接触;刷子上的弹簧压力不同;电刷在电刷盒中过松或过紧;刷条间距不相等,使部分电刷短路的换向元件不在几何局部线上;换向器外观不干净等。3.电化学原因正常运转的电机换向器表面会出现一层很薄的棕色氧化亚铜膜。理论表明氧化亚铜膜的存在是电机良好换向的必要前提。这是因为氧化亚铜膜本身不仅电阻高,而且表面往往吸附一层薄薄的水、氧和石墨粉,具有很好的平滑效果,有利于增加电刷和换向器的磨损。为什么DC电机抽水困难?
faulhaber电机选型 1516T/1516T/1516T 空心杯 电机
DC电机的应用非常广泛,在我们的生活中随处可见。使用中要按照规范操作,否则可能会对设备造成一定的影响,比如电机表面损坏。我们先来看看表面损伤怎么处理。1.一旦轴承严重磨损、过载或受到冲击,DC电机的轴承稍有变形或弯曲,就会造成转子扫膛。扫孔的结果是,铁芯表面可能磨损,但铁芯可能磨损,绕组可能损坏。因此,应立即切断电源,停止减速电机的运行并进行检查。2.铁芯擦伤部分的硅钢片由于摩擦过热而退火,导致硅钢片的磁导率降低。如果不及时处理,涡流会随着DC电机铁芯绝缘的老化而增大,导致微电机的温升增大,导致微电机过热甚至烧毁。3、绕组绝缘击穿短路或绕组对地短路而产生电弧,使铁芯表面烧伤,而烧伤的铁芯表面往往凹凸不平。这不仅影响设备的正常运行,还会导致硅钢片之间短路,增加铁芯的涡流。以上是DC电机表面损坏的处理,不同的损坏部位和原因解决的方法也不同。处理时要仔细观察问题,及时解决,不要等伤害加大,带来更大的影响。成立于2005年,是一家集研发、生产、销售各种微型DC电机、齿轮减速电机、行星减速电机、罩极减速电机、特种齿轮箱电机为一体的高科技民营企业。产品广泛应用于汽车、通讯设备、智能家居、医疗器械、智能安防、家用电器、西厨设备、机械电子等高端传动结构,产品远销国内外50多个国家和地区。DC电机电刷火花过大的原因及解决方法
faulhaber电机选型 1516T/1516T/1516T 空心杯 电机
结构在四轴飞行器或者一些航模上,都能看到这种类型的直流无刷电机,它通常有三条线,U,V,W,当然航模上还需要配置一个电调(ESC)——作为电机的驱动器。这里的电调往往有两种驱动方式,六步方波,或者FOC驱动,下面主要对六步方波驱动方式进行分析。无刷直流电机直流无刷由定子和转子构成,是电枢绕组,转子是永磁体;两对极电机,分别是U1,V1,W1,U2,V2,W2。2对极BLDC内部结构电机的定子是电枢绕组在通过交变电流的时候,会产生磁场,电枢的材料是铁芯,可以导磁,这样可以增大磁场的强度,磁场的方向取决于电流的方向,具体可以根据右手螺旋定则来判断。右手螺旋定则换相原理这里我们简单介绍一下转子旋转的过程,即无刷直流电机的换相原理:首先我们对电枢绕组施加适当大小的电流,线圈将产生一个磁场,该磁场将吸引转子的永磁体;如果我们一个接一个地激活每个线圈,这样可以产生一个旋转的磁场,由于永磁体和电磁体之间的力相互作用,转子将在旋转的磁场作用下继续旋转。旋转磁场但是上面提到,这里是两对极的直流无刷电机,那么为了提高电机的效率,我们可以将两个相反的线圈组成一个绕组,这样会产生与转子极相反的磁极,从而获得双倍的磁场的力。共同通电初步了解了内部的结构和通电机制之后,我们就需要产生相应的驱动信号去产生旋转的磁场,带动转子转动。通常我们会在MCU中会固化一段代码,这段代码可以产生驱动信号;然后驱动信号通过IPM间接驱动六个功率开关元器件(这里可以是MOSFET),从而产生旋转的磁场。电机模型可以等效成三个星型连接的电感,所以我们需要做的工作就是如何去产生驱动信号。这个驱动信号又符合什么样的规律呢?下面我们进一步介绍驱动信号。两两通电:如果我们将 A 相上拉至高电平,然后在另一侧将 B 相接地,则电流将从 VCC 流过A 相,中性点和 B 相,最终流向地。因此,只需一个电流,我们就可以产生了四个不同的磁极,从而导致转子移动。两两通电的情况其实电机内部一般可以等效成一个星型的连接方式,A,B,C三相的中性点连接在一起,外部通过MOSFET或者IGBT组成功率开关元器件,进行控制,所以这里也可以说明无刷直流电机,通常有U,V,W三条线引出来。首先规定一下我们的驱动电路的相应符号:使用SW1和SW2作为一个上下管驱动U,或者是a;使用SW3和SW4作为一个上下管驱动V,或者是b;使用SW5和SW6作为一个上下管驱动W,或者是c;然后我们在这里规定:上管打开标记为+,下管打开标记为-,上下管都不开标记为0。最终让转子朝一个方向旋转的驱动时序应该是这样的:a+,b-,c0a+,b0,c-a0,b+,c-a-,b+,c0a-,b0,c+a0,b-,c+六步方波驱动的六步方波时序正确之后,我们基本可以实现对无刷直流电机的开环控制驱动了;具体的驱动时序可以简单画一下,对于每一相而言都需要六步的驱动时序,然后两相之间的相位相差120°。例如A相的六步相序需要比B相超前120°,B相需要比C相超前120°,驱动信号时序下面是我实际过程中测试的上管的方波驱动信号,可以和A相,B相,C相的信号对应起来。实测波形闭环控制实现开环运行之后,就要进行闭环控制了,首先有一点需要说明的是,前面的六步PWM时序,并没有根据转子的实际位置进行磁场的切换,所以可能出现的情况,就是失步,这个有点类似步进电机。结论就是实际磁场旋转的速度可能远快于转子旋转的速度,导致磁场的旋转速度和转子不同步,所以就造成了失步。如果这里引入转子的位置反馈量,就可以完美的解决这个问题,所以通常会加入霍尔传感器来检测实际的转子位置。无刷直流电机内的霍尔传感器转子处于不同位置的时候霍尔传感器会产生相应的信号,并且还可以根据霍尔信号计算转速,作为后面速度闭环的反馈值。霍尔信号一般来说增加了霍尔传感器,在成本和电机的结构复杂程度上都会大大增加,所以,这里可以通过检测每一相的反电动势(Back EMF),来进行位置的估算以及速度的计算。反电动势无感方波的驱动方式难点在于启动和过零点的检测上,通常启动可以使用三段式启动的方式,即转子预定位,开环强拖,开环切闭环,这三个过程。另外还可以进行高频注入的方式确定转子的初始位置,然后直接进行启动,在过零点的检测和换相存在一定的难度。结论本文简单介绍了有刷直流电机和无刷直流电机的结构和原理,以及各自的优势。进一步介绍了无刷直流电机的六步方波驱动原理,简单提及了闭环控制中一些注意点。有刷直流电机是什么您弄得清楚吗?
首页
产品
新闻
联系